International journal of Engineering Research ISSN:2348-4039
& Volume-1,Issue-1
Management Technology Janua?p14

[JERMT

An Analytical Study of Software ProcessModels: WHITE
PAPER

Dr. Shweta Paradkar Dr. Diksha Grover
Assistant Professor, Assistant Professor
kalindi College, Rajdhani College,
University of Delhi University of Delhi

Abstract

This research deals with one of the crucial anceragive issues in computer world today. It focusesnly on
software management process which concerns withdfteare development through various software ggsc
models applied on software development life cyClee models covered are Prescriptive model, Incrémhen
process model, Evolutionary process model and Sl process models. Each of these models ssggest
somewhat different process flow but all have aeseof generic phases in common. These models haire t
own advantages and disadvantages, hence the giba dsearch is to present each of these modstsftefare
development and highlight their features and applidy for all various types of softwares.

I ntroduction:

“Necessity is mother of invention” holds true foegyfield in our every day lives. The invent of one
kind of technology has a profound and unexpectéetebn totally unrelated technologies, industries,
people and cultures across all the boundries.

Today, computers have successfully become an altggart across a broad spectrum of industry
applications, namely medicine, education , commedtgaays a very vital role in overall industriahd
technical developments in both developed and depusjonations. Software engineering has evolved
from inconspicuous idea practiced by a relativetyal number of practitioners to a full fledged
engineering discipline. Software has become a ysit#hat enables the creation of new technologies,
enhancement of the existing ones and and the déatlder technologies. Software has become one of
the most critical factors to the advancement of fiumace.

The overall aim of software engineering is to pdavimodels and processes that culminate in the
production of a well-documented software that isyeto predict and maintain. The development
organization follows a formal process while devalgpthe software. The key component of the whole
development process is the life cycle model on Wwiihe development is based. The important choice of
the process model could significantly affect theedepment cost, effort and schedule. Life cyclehaf
software starts from concept development and entihe aetirement stage.

65

International journal of Engineering Research ISSN:2348-4039
& Volume-1,Issue-1
Management Technology Janua?p14

[JERMT

2. Software Process Model
A software process model is an abstract representat a process. It presents a description ofoagss
from some particular perspective as:

1. Specification.

2. Design.

3. Validation.

4. Evolution.

These models are chosen because their features correspond to most software development programs.
The various software process models covered are:

Prescriptive Models

Incremental Process Models

Evolutionary Process Models

2.1 Prescriptive Models

2.1.1 Traditional Software Life Cycle Models (Water Fall Model)

Traditional models of software evolution have bgamnt of software engineering ever since its infantiye
classic software life cycle (or "waterfall charihd stepwise refinement models are widely discugsed
programming practices. The incremental release meddosely related to industrial practices wharenost
often occurs. The software evolution can be deedrilm a progressive manner, starting with requirdse
specification, preliminary design, and implememtatithese usually have little or no further chaggzation
other than a list of attributes that the productsath a stage should possess. Further, these madels
independent of any organizational developmentregttthoice of programming language, software appbo
domain, etc..

66

International journal of Engineering Research ISSN:2348-4039
& Volume-1,Issue-1
Management Technology Janua?p14

[JERMT

The waterfall model is the classical model of software engineering. This model is one of the oldest models
and is widely used in government projects and in many major companies. As this model emphasizes
planning in early stages, it ensures design flaws before they develop. In addition, its intensive document
and planning make it work well for projects in which quality control is a major concern.

The pure waterfall lifecycle consists of several nonoverlapping stages, as shown in the following figure.
The model begins with establishing system requirements and software requirements and continues with
architectural design, detailed design, coding, testing, and maintenance.The waterfall model serves as a
baseline for many other lifecycle models.

Thefollowing list details the steps for using the waterfall

System requirements: Establishes the componenksiflaling the system, including the hardware regmuients,
software tools, and other necessary componentsv&ef requirements: Establishes the expectatians fo
software functionality and identifies which systesmguirements the software affects.

Architectural design: Determines the software frammdk of a system to meet the specific requiremeriss
design defines the major components and the irtteracf those components.

Detailed Designs: Examines the software comporagftaed in the architectural design stage and presla
specification for how each component is implemented

Coding: Implements the detailed design specificatio

Testing: Determines whether the software meetspkeified requirements and finds any errors presethie
code.

Maintenance: Addresses problems and enhancemergstscafter the software releases.

General Overview of "' Waterfall Model"

Requirement gathering
and analysis

System Design

Implementation

Deployment of System

+
Mantenance

Fig 1. WaterFall Model.

67

International journal of Engineering Research ISSN:2348-4039
& Volume-1,Issue-1
Management Technology Janua?p14

[JERMT

Strenghts:

Easy to understand and implement.

Widely used and known (in theory!).

Reinforces good habits: define-before- design,ghebefore-code.
Identifies deliverables and milestones.

Document driven

Works well on mature products and weak teams.

Weakness :

Idealized, doesn’t match reality well.

Doesn't reflect iterative nature of exploratory depment.

Unrealistic to expect accurate requirements sy @aproject.
Software is delivered late in project, delays di®ry of serious errors.
Difficult to integrate risk management.

Difficult and expensive to make changes to documents, "swimming upstream”.

Significant administrative overhead, costly for small teams and projects .

2.2 Incremental Process Model

Developers often come across a situation in whiehintitial software requirements are reasonably-defined,
yet the overall scope of the software still eluttesdevelopers. In addition, sometimes a workingiea of
software based on initial requirements is to begito customers which provide a limited set of fiorality.
Later on the product can be refined to providergmaaced functionality in the next releases. Thigraach
combines the sequential nature of the water fatiehapplied in iterative manner. This model appliesar
sequences in a staggered fashion as the time peag,gproducing a deliverable increment of thevso#t. The
first increment is known as “core product” where tfasic requirements are met. This is then useand/
evaluated by the customer providing the necessa&gidfack to the developer. Later on with every imemt the
core product is modified until the complete prodsalelivered.

Strength:

Particularly useful when not sufficient manpoweavsilable for a complete implementation by thedtiea.
Early increments can be implemented with fewer feop

Few features can be postponed until later stageéadueavailability of some resources.

68

International journal of Engineering Research ISSN:2348-4039

& Volume-1,Issue-1
Management Technology Janua?p14
System/information Increment 1
engineering
Code o] Test Delivery of

Analysis I—- Design

Increment 2 | Analysis feed Design | Code | Test Delivery of
2nd increment

1st increment

Increment 3 | Analysis =] Design f=e| Code fs| Test Delivery of
3rd increment

Increment 4 | Analysis fee| Design fee| Code fes| Test Delivery of
4th increment

Calendar time

Fig.2 incremental model

2.2.1 Rapid Application Model

This model works on the principle of short development cycle(e.g., 60 to 90 days). In approach it can
viewed as a high speed version of waterfall model. This model requires the product scope to be
constrained and requirement well understood. The rapid development is achieved by component based
construction. Like all the other models it also encompasses the generic framework activities:

Communication: understanding the business problem.

Planning: managing the multiple teams working in parallel.

Modeling: includes business, data, and process modeling.

Construction: use of existing software components and automatic code generation.

Deployment: establishes the basis for subsequent iterations.

69

International journal of Engineering Research ISSN:2348-4039

& Volume-1,Issue-1
Management Technology Janua?p14

[JERMT

Strength:
Short development cycle
If scalable scope of project then a very effici@pproach.

Weakness:
Requires a sufficient amount of human resourceutld lnultiple teams.
If problem not modularized then can be ineffecaypgroach.

Not very effective if technical risks are high.

I Tear #3

| Team #2 Busness
—_— NlloedallinnT
| Team#l Business
o Fledelling =
MModelling ol
_ e
Bocelling o Provess

Bl b

Proeess Applicagon

L Todelling el abiom

Process

¥ Modelling . THEECE I
Application -

T peneration

| » “pplication =
Eeneration Testing &
- > Tuenower

Testing &
Twrnever

_— G0-90 days
Figure 1.5 - RAT Liod el

Fig.3 RAD model

2.3 Evolutionary Process Models:

2.3.1 Prototyping

This model works in the scenario when the custdmasrlegitimate needs but is clueless about thésidike
input, processing or output requirements. On therdband if the developer is unsure about a cealgorithm,
man machine interface, platform in general, thisrapch proves to be very handy. It begins with
communication between customer and developer whergoal of the system in general is discussedtzse
areas are identified which need further refinemarguick design is planned that focuses on viséispects of
software to the customer. This leads to constroatica prototype which is handed over to custoroeest

70

International journal of Engineering Research ISSN:2348-4039
& Volume-1,Issue-1
Management Technology Janua?p14

[JERMT

drive. Customer then gives feedback which is theaduo refine the requirements further. This idiooed till
the time customer is satisfied and the requiremasnet.

Strength:

The prototype serves as a mechanism for identifgoftyvare requirement.

The prototype can serve as the first system foetstdnding of requirement.

Weakness:

The prototype model is not the actual thing butigkqfix.

It is built using some inferior technology or inappropriate operating system or programming language.

The customer is not convinced about the term prototype as it can be mistaken for the actual thing.

Bulld frevias
mackup

Fig.4 Prototype model

2.3.2Spiral Mode

The spiral model is similar to the incremental mMpdethmore emphases placed on risk analysis. Hils
model has four phases: Planning, Risk Analysis,it&®ging and Evaluation. A software project repdigte
passes through these phases in iterations (capedlsSin this model). The baseline spiral, statin the
planning phase, requirements are gathered andsrisksessed. Each subsequent spiral builds onatedire
spiral. Requirements are gathered during the phgnphase. In the risk analysis phase, a procassdisrtaken
to identify risk and alternate solutions. A profmyis produced at the end of the risk analysis @hasftware is
produced in the engineering phase, along withrtgsit the end of the phase. The evaluation phésesathe
customer to evaluate the output of the projectate thefore the project continues to the next spiral

In the spiral model, the angular component reptssaogress, and the radius of the spiral repressst.
Strength:

High amount of risk analysis.Good for large andsmis-critical projects.

Software is produced early in the software lifeleyc

Weakness:

71

International journal of Engineering Research
&
Management Technology

ISSN:2348-4039
Volume-1,Issue-1
Janua?p14

[JERMT

Can be a costly model to use.

Risk analysis requires highly specific expertise.

Project’s success is highly dependent on the miskysis phase.

Doesn’t work well for smaller projects.

Spiral model sectors

Objective setting :Specific objectives for the phase identified.

Risk assessment and reduction: Risks are assesdediavities are put in place to reduce the keksi

Development and validation: A development modeltfa system is chosen which can be any of the gkner
models.

Planning: The project is reviewed and the next pludghe spiral is planned.

Curnlabive Cost
I
-

Progress
through
sleps

Determyine
abjectives,
altemnaiives,
canslrainis

Evaluaie altemnatives
icdentifh, resalve ks

Risk
analysis

Rizk
nnalysis

Rigk |
amii-
Iyais

Requirements plin
Lifis-cyele plan

Cosmmaimernd
Review

partition
Concepl af
operation

hetaibedd
design

prociue
design

Feguirements
walidation

Innzgration
and tesi
plan

Diegign valklation
ani verificatian

Integration

anil lesst

Plam next phases | ACEplance

lernen-
Implemen- |

Eataom

Develop, venly
nexi-level product

The Spiral Model

Fig. 4 Spiral Model
3. Specialized process models
3.1 Component-based development
These software components are developed by theovemdho pass them as products. These components
provide the required functionality and well definaterfaces making them ready to use and can lmepocated
into the software. The component-based developmedel exhibit few features of the spiral modelsIt
evolutionary in nature, having an iterative apploecthe development of the software. However ntioelel
composes application from prepackaged software ooems. Firstly the components are identified dueoh t
only the modeling and construction activities cagib with.the components designed can fall intoveotional

software modules or object-oriented classes cagorhe component-based development model corsprfse
the following steps, regardless of the technologing used:

72

International journal of Engineering Research ISSN:2348-4039
& Volume-1,Issue-1
Management Technology Janua?p14

[JERMT

All the components are well researched in ternmth®@idomain they will operate in and also evaluated.
Issues regarding integration are kept in mind.

Software architecture is designed to incorporagedrcomponents.

Components fit well into the architecture.

All the components are tested for the desired fanatity.

The clear advantage of using component-based dawvelat model is reuse, leading to reduced eftfiong
and cost over substantial amounts.

3.2 The formal methods models

The formal methods are based on a pure mathematical approach to specify, develop and verify a
computer based system by applying rigorous mathematical notations. This model carries out a set of
activities that leads to formal mathematical specification of computer software. This approach helps to
identify a set of problems which go undetected in case of the other models. Problem areas such as
ambiguity, incompleteness and inconsistency can be discovered fairly easily with a mathematical model
than the other models. When applied during the design phase, it performs the task of program
verification and therefore enables the software engineers to discover and correct errors that might
otherwise go undetected. Due to a complex approach, this model is not as popular as the other models,
yet it gives better results when defect free software is required.

Strengths:

A very effective approach for building safety-critical software (aircraft avionics and medical devices). Any
slipups in performance would result severe economics hardships for the developers.

Weakness:
Formal methods can be quite time consuming as well as costly for the developers.

Not every organization is equipped with personnel who are comfortable with approach; hence the team
needs to be well trained for this.

[t is very difficult to convince the unsophisticated customers about the technical details of this model.
4. Conclusion and Future Work

In the end, the study showed the various existing model for software development. These models have
been in existence since last few decades. Based on the strengths and weaknesses of each of the models ,
their applicability ranges from all different kinds of application areas. Waterfall model is suited for

73

International journal of Engineering Research ISSN:2348-4039
& Volume-1,Issue-1
Management Technology Janua?p14

[JERMT

smaller projects which have clearly defined requirements. Incremental modal is good choice when
customer is not able to spell out all the requirements at the onset, whereas Prototype model serves well
for situations where customer is unable to clearly define the functionality of the system. The RAD model
is applicable where there is short development cycle and Spiral model is more suited for large and
complex systems.

Having discussed each model for their respective features, the upcoming trends in the software
industry is for the Unified Process.

It is an attempt to draw best features and characteristics of conventional models, but characterize them
in a way that implements many of the best principles of agile software development. It recognizes
importance of customer communication , also focuses greatly on software architecture. It suggests a
process flow that is iterative and incremental, providing the evolutionary feel that is essential in modern
software development.

REFERENCES
Roger Pressman, “ Software Engineering A Practitioner’s Approach” sixth edition.
Pankaj Jalote, “An Integrated Approach to Software Engineering” third Edition.

[an Sommerville “Software Engineering”Wesley, 7th edition, 2004.

Model driven Software Engineering Practices by Marco Brambilla

74

